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This paper is an analysis of the steady incompressible, two-dimensional flow of 
conducting fluids through ducts of arbitrarily varying cross-section under the 
action of a strong, uniform, transverse, magnetic field. More precisely, the flow is 
such that the velocity is given by u = ( ~ ~ ( 2 ,  y"), uJ2, y"), 0) ,  the position of the 
duct walls by y" =A@),  fb(Z) and z" = +- b,  where b 9 ft- fb, and the magnetic 
field by B, = (0, B,, 0). It is assumed that the magnetic field is strong enough to  
satisfy the conditions that the interaction parameter, N (  = M2/R) 9 1, where M 
is the Hartmann number and R is the Reynolds number, and also that M 9 1 
and R, < 1, where R, is the magnetic Reynolds number. 

We examine the flow in three separate regions: 
(i) the 'core' region in which the pressure gradient is balanced by electro- 

magnetic forces; 
(ii) Hartmann boundary layers where electromagnetic forces are balanced by 

viscous forces; 
(iii) thin layers parallel to the magnetic field in which electromagnetic forces, 

inertial forces, and the pressure gradient balance each other. These layers which 
have thickness O(N-f)  occur where the slope of the duct wall changes abruptly. 

By expanding the solution as a series in descending powers of N we calculate 
the velocity distribution for regions (i) and (ii) for finite values of N attainable in 
the laboratory. 

1. Introduction 
In  this paper we consider the effect of a strong uniform magnetic field 

B, = (0, B,, 0) 

on steady, two-dimensional flows, whose velocities are given by 

u = (U#, y"), U,@, a, 01, 

through ducts with walls at  

y" =fr(Z), fb(Z) and z" = f b, 

t Seconded to School of Engineering Science, University of Warwick, Coventry, 
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where we assume b 9 ft- fb. (The effect of the walls at  Z = k b on the flow is 
considered negligible.) Our analysis also enables us to examine the flow over a 
two-dimensional body placed in such a duct (see figure 1). We assume that the 
fluid is incompressible, that it  has uniform properties, and that its conductivity 
is such that the magnetic Reynolds number (R,) is much less than unity. 

There are two main reasons for studying these flows, apart from their intrinsic 
theoretical interest. First, although many MHD devices involve flow in converg- 
ing or diverging ducts, there have been apparently few theoretical attempts to 
analyse them. Most of the existing theory for laminar, incompressible MHD duct 
flow has been developed for cases where the cross-section is uniform (for a list 
of references see Hunt 1965). Axford (1961) examined the flow in ducts with 
straight diverging walls, but assumed the magnetic Geld to  decrease inversely 
as the distance from a source point. Secondly, there is a great need for experi- 
mental work to test MHD theory and so it is important that the theory be in 
such a form that it can be tested in the laboratory. The situation examined 
in this paper is one which can be reproduced experimentally using liquid metals 
and it is hoped that the formulae which are set out here will be of use in this 
connexion. 

Ludford (1961) and Ludford & Singh (1963) have developed much of the exist- 
ing theory for external flows in transverse magnetic fields for two and three 
dimensions. They assumed the magnetic field to be strong and the conductivity 
weak enough so that the induced field could be ignored. More precisely, they 
required that the interaction parameter N (  =uBfa/pU,) B 1, and that the 
magnetic Reynolds number R,( =pcrU,a) < 1, where B,, u, p, p are the flux 
density of the imposed transverse magnetic field, the fluid conductivity, density, 
and the magnetic permeability, respectively. U, and a are the characteristic 
velocity and length. 

Making this approximation for two-dimensional flow, Ludford ’( 1961) found 
that in the ‘inner’ region near the body the inertial terms in the momentum 
equation are negligible compared to the electromagnetic and pressure forces, 
except in singular zones at the front and rear of the bodies. In  the ‘outer’ region 
sufficiently far in the field or y direction from the body, he found that inertial 
forces again became important. He discussed their effect by compressing the y 
co-ordinate to retain the influence of inertia and found expressions for lift and 
drag. The singularities in the inner region were left, and the question of how these 
may affect the flow was not resolved. 

We apply Ludford’s approximations to internal flows with due regard to 
viscous effects a t  the walls. The entire ‘inviscid’ core flow then corresponds to his 
‘inner ’ region. As in external flows, singular zones arise in the core flow whenever 
the duct wall curvature is O(N) ,  and it is this difficulty which is resolved in our 
treatment of the core. It is found that the singular zones are the limit as N+co 
of thin layers of thickness O ( N 4 )  in which inertial forces, electromagnetic forces 
and the pressure gradient are balanced. When the longitudinal or x co-ordinate 
is stretched to reveal this, Ludford’s (1961) principal equation (his equation (13)) 
is reproduced. In  solving this equation we use a simple transform method for 
internal flows and find that we can use the fundamental solution which Ludford 
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developed in his paper to construct a uniform approximation to his external 
flow problem. 

Unlike a wind tunnel, a duct for investigating MHD flow over bodies has to be 
placed in a magnet whose gap is usually small. Consequently the duct size is 
severely limited and for flow over a practical size of body wall effects are im- 
portant in the inviscid regions as well as the boundary layers. We examine the 
effects of the wall on the inviscid regions using Ludford's approximation and we 
examine the boundary layers by assuming that the Hartmann number 
M{ = B,a(cr/r)H) 1. Here 7 is the viscosity. An interesting feature of this calcula- 
tion is that higher order approximations to the Hartmann layer can easily be 
found. This is possible because of the simplicity of the core flow solution (away 
from singular zones), for which an expansion in inverse powers of N may easily 
be found. 

The approximation used by Ludford has also been used, very successfully, by 
Bornhorst (1965) to calculate the effect of a magnetic field on the free surface of 
a mercury flow when N $ 1. The fact that the theory accurately predicted the 
free surface profiles found experimentally demonstrates the usefulness of the 
approximation. It is worth observing that, in general, it is not difficult to devise 
laboratory experiments which satisfy our criteria that N 9 1, R, < 1 and 
M $ 1, while having the Reynolds number large enough for accurate readings 
of pressure, velocity, etc., to be taken. On the other hand our criteria are not 
satisfied by the flows in practical MHD devices at  the moment (e.g. in the biggest 
MHD generators N is only O( 1)). However, as their size and their field strength 
increase, so that N increases, our approximate methods may become increasingly 
useful in examining the flows in MHD pumps, generators, etc. 

2. Statement of the problem 

when the fluid properties are constant are: 
The magnetohydrodynamic (MHD) equations for steady, incompressible flow 

p(u.V)u = -V@+j xB+rV2u, (2.1) 
v .u = 0, (2.2) 

j = a ( E + u x B ) ,  (2.3) 
V x E = O ,  (2.4) 

j = ( W V  x B, (2.5) 

V.B = 0, (2.6) 
where u, p ,  j, B, E are velocity, pressure, current density, magnetic flux density 
and electric field respectively. When R, @ 1, we can ignore the induced magnetic 
field due to j and assume that, in (2.1) and (2.3), 

where B, is the imposed magnetic field. 
B = B,, 

If now we consider a two-dimensional flow in the (2, g)-plane, such that 
ua = alaz = 0, 

aE,/aa = aE,/az" = 0, 
aEJa2 = aE,/ag = 0. 

then 
and hence from (2.4) 

16-2 
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Whether the walls at y" =A(?)), fb(Z) are conducting or not, it may be shown that 
Ex = E, = 0 provided there are no current sources or sinks along these walls. 
(If the electrical boundary conditions on the walls a t  2 = & b vary rapidly in the 
x-direction then it follows that a/az + 0 and E, + 0; thus the applicability of the 
basic assumptions to real flows must always be carefully checked. We discuss this 
point further in the conclusion.) If the magnetic field B, lies in the y-direction 
and if we reduce the parameters to a non-dimensional form in terms of Q, the 
total flow rate through the duct per unit depth, B,, and a, arepresentative channel 
width, the equations become: 

~(au/ax)+v(au/ay) = -ap/ax-N(u+E,) +R-lV2u,\ 

FIGURE 1. The various regions of flow, core (C), boundary layers (B), and Ludford layers 
(L), which are discussed in $2. 

To solve these equations and satisfy the boundary conditions we postulate the 
existence of various regions in the flow, which we examine in turn. The solutions 
which are found satisfy the boundary conditions, match each other at the 
boundaries of the regions, and are consistent with the original assumptions. We 
will now discuss the approximations to be used (see figure 1) by looking at the 
general problem of flow over a body placed in a duct with diverging walls. 
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Regions C (core $ow) 
In  these regions, away from the boundaries, velocity gradients may be assumed 
to be 0(1 )  so that viscous forces are negligible and, since N % 1, the electro- 
magnetic forces are very much greater than the inertial forces. Thus in these 
regions the electromagnetic force is balanced by the pressure gradient, and con- 
sequently the body force, j x B, is irrotational. As pointed out by Shercliff (1965), 
the j x B force only affects the motion of an incompressible fluid with no free 
surfaces when it is rotational. It thus appears paradoxical that when no viscous 
effects are present, as the j x B  force becomes sufficiently large it becomes 
irrotational. The explanation is that although in the final flow pattern the j x B 
force is irrotational, in the setting-up process the j x B force has to be rotational. 
Note that when the inertial forces are negligible the velocity is very simply 
determined by Ohm’s law and the continuity equation, as shown in $3.  As 
Ludford has shown, this approximation breaks down in the region near a dis- 
continuity in the slope of the boundary walls, as illustrated by the kink in the 
streamlines between C,, C, and C,, C, in figure 1. 

Regions L (Ludford layers) 
These regions emanate in the field direction from places where the slope of the 
boundary walls changes rapidly. Consequently v changes rapidly in the x- 
direction and therefore in these regions the inertial and viscous forces may be 
appreciable. These are the singular regions near the front and rear of a body which 
Ludford did not analyse. The structure of these regions, which we shall call 
‘Ludford’ layers, is analysed in 0 4 and is shown to depend on the relative size of 
M and R. For the parameter range of interest it is shown that the thickness of 
these layers is O(N-4). Our analysis assumes that the slopes of the boundaries are 
always finite, although their rates of change may be infinite. This means we do not 
analyse the layers emanating from the rear of the body in figure 1, but only from 
the front. However, since duct walls usually have finite slopes, the analysis is 
valid for most practical situations. 

Regions B 

In these regions boundary layers are formed. We shall assume that their thickness 
is small compared with the size of the duct and that in these layers the dominant 
forces are viscous and electromagnetic. These assumptions are shown in $ 5  to be 
equivalent to the conditions N % 1 and M 1, the thickness of the boundary 
layer then being O(M-l). In  this analysis we implicitly assume that if N and M 
are sufficiently large there is no separation of the boundary layers, a supposition 
borne out by several experimental and theoretical investigations. In  experi- 
mental investigations of the flow over cylinders, spheres, and flat plates (Tsinober 
1963; Tsinober, Shtern & Shcherbinin 1963), and flow through a diverging 
channel (Heiser 1964), it has been shown that when the magnetic field is suffici- 
ently great it can completely suppress the separation of a boundary layer. Some 
theoretical evidence for this phenomenon has been provided by Moreau (1964) 
who demonstrated that a transverse magnetic field can suppress the separation 
of boundary layers on a flat plate and on a cylinder. 
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3. Core flow 
As Ludford (1961) has shown, in the limit N-tco ,  (2.7) reduce to 

appx + N(U + E,) = 0, 

a ( P / m / a Y  = 0, 

a u 1 a X - t -  avpy = 0, 

( 3 . 1 ~ )  

‘ (3 . lb)  

( 3 . 1 ~ )  

on allowing p to grow large with N and assuming that velocity gradients are 
o ( N ) .  Equations (3.1) have the solution 

u = -f’(X), p = Nlf(X)-XEo], v = yf”(x) +g(x). (3.2) 

Clearly, this solution cannot satisfy the no-slip condition u = 0, v = 0 at the 
walls. In  fact, Hartmann layers of thickness O(M-l) must form there, to reduce 
the tangential velocity of the core flow (3.2) to zero (see $5).  We therefore relax 
the no-slip condition, and require only that the normal velocity a t  the walls 
vanish.? 

For flow in a duct, the top and bottom walls of which are described by the 
equations y = 4 ( x ) ,  y = &(x) respectively, the boundary conditions are satisfied 
if 

I$f”(x) + g(x) = Fj(x) u, 4 f ” ( X )  + g(x) = Fi(X) u, 

or 

Furthermore, to satisfy the continuity requirement, 

Thus, 

(3.3) 

(3.5) 

and p may be found by integrating (3.1 a). If a body is placed in the duct, the 
top and bottom walls of which are at y = Ct(x), y = Cb(x), (II < x < Z2), then the 
solution when 1, < x < I, for the flow between the body and the top wall is: 

u = (I$-Ct)-l, 2, = (~-C,)-2[F;(y-C,)+~(EE-y)], ( 3 . 6 ~ )  

and for the flow between the body and the bottom wall, 

u = (C, -&)-I, v = (C, - F,)-2[C,(y - 4) + P,(C, - y)]. (3.6b) 

The solution for x < I,, and x > 1, is unaltered by the presence of the body. Thus 
the flow over a body in a duct is identical to the flow in two separate ducts, their 
walls being the top and bottom walls of the duct, the dividing streamlines and 
the top and bottom walls of the body. Therefore in the following analysis, where 
only flows in ducts are mentioned, we are implicitly treating flows over bodies as 
well. 

t Ludford (1961) also deals with the solution (3.2). Since he is concerned with an infinite 
domain, however, he must takef’ = constant, and cannot satisfy boundary conditions at 
infinity. These are satisfied by considering inertial effects for large y. 
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Our duct flow solution (3.5) (or pseudo duct flow (3 .6 ) )  holds whenever the 
wall slopes and curvatures are finite, since 

so that if F"tb or Fi,2b = O(N) ,  (3.1) fails to hold. As discussed in $2, we only 
deal with the case where q , b  = 0(1) ,  so that we consider situations where (3.5) 
fails to hold owing t o  the curvature being O(N) .  (The solution (3.6) always fails 
at the front and rear of a body except in the event of the body being cusp-shaped 
at these points.) 

The solution (3.5) may be regarded as the leading terms in an asymptotic 
expansion: 

u = uo+e,(N)u,(x, Y)+€Z(N)U2+ ... , 
v = vo+€1(N)vl+€2(N)v2+ ... ) 
P = N b o  + %(N)Pl+ ... I, 

where = o(e,). The only choice of the sequence en which leads to a set of 
equations for u,, v,, and p ,  independent of N is en = N-". In  considering the 
higher approximations, it  is important to realize that the higher n the more the 
viscous terms become comparable to the electromagnetic and inertial terms, 
since the condition which must be satisfied for the viscous terms to be negligible 
in the nth approximation is that M-2 < Assuming this condition to be 
satisfied, the higher approximations may be found from 

(3.7) 
n- 1 8 2  a 2  3 = ( U ~ V ~ V , - ~ - ~  - V ~ V % , - ~ - ~ ) ,  where V 2  = - + - 

ay k=O 8x2 8y2' 

The arbitrary function of x arising from integration of (3.7) is fixed by requiring 

and v, follows from the formula 

Note that v,, as found from (3.8), satisfies the tangency conditions at the walls. 
The solution for u1 and vl is 

t We axe grateful to the referees for pointing this out to us. This condition is sufficient 
to allow one to ignore viscosity in the equations of  motion. As pointed out in $ 5 ,  how- 
ever, the Hartmann layer exerts a displacement effect on the core flow unless M-l< N-". 
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Although we have indicated the method for finding higher approximations than 
the first, there is not much practical use in computing them. However, it is 
interesting to note that if the wall slope becomes O(Ni ) ,  then N-nu, becomes of 
the same order as uo for all values of n. Therefore, to consider the first and higher 
approximations we must satisfy the condition Fi, FL < O(N*).  

An example of the calculation of the zeroth and first approximations is given 
in 5 6, where we consider the flow in converging and diverging ducts. The results 
are shown graphically in figure 5.  

4. The Ludford layer equations 
In  regions where the wall curvature is O ( N )  the inertial forces cannot be neglec- 

ted and the solution for the core flow, ( 3 4 ,  is no longer valid. Suppose such a 
region exists at x = 0,  then we see from (3.5) that v,, has an O( 1 )  jump while uo is 

‘Ludford’ 

FIGURE 2. Illustration of the basic problem for the Ludford layer. 

continuous at  this point. (Note that vl, u1 and higher order terms are, in general, 
all discontinuous, as is shown by the example of 8 6.) Now let us assume that the 
width of this region in the streamwise direction, 8, be very much less than the 
width of the channel, i.e. 8 < 1, and that the region appears to be a discontinuity 
in the limit N-tco .  Then the problem is to show that such a layer can exist by 
finding a solution for u, win the layer which matches u,,, w,, in the core (see figure 2). 

Stretch the x-co-ordinate by defining 

x = xp.  (4.1) 

Since u is continuous in the core, it  changes by an amount O(6) in the layer. 
Accordingly, in the layer put 

2.4 = l /h(O) + S ( U ( X ,  Y)), P = P/& (4.293) 
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where h(x)  = I((x)-F,(s) is the channel width a t  station x. Also let h(0)  = h,. 
In  terms of U ,  v, P, X ,  y, equations (2.7) are 

au au lap 
h, ax ax ay ~ a x  +SU-+&- = - - - - & N U - N  
1 au _- 

1 av av av ap 1 aZv 
-- h , a x + s u - + s v -  = ax ay ay ~ 6 a ~ 2 '  

(4.4b) 

au av -+- = 0, ax ay 
(4.4c) 

where terms of O(R-l) have been neglected compared to those of O(6-2R-l). All 
unknown quantities appearing in (4.4) and their derivatives are assumed to be 
O( 1). Equation ( 4 . 4 ~ )  is then 

BP/BX = -S3NU-82N(Eo+h~1)+0(S2)+0(SR-1) ,  (4 .5)  

while (4 .4b)  is 1 av ap 1 as 
= --+---+O(S). ay RS ax2 (4.6) 

On eliminating the pressure and the core value of the j x B force, and ignoring 
the error terms, one obtains the equation 

which is also satisfied by U. 

to different values of 6, as listed below. 

6 = M-4, and M 

Depending on the values of N and R four possible situations may arise, leading 

(a)  Electromagnetic-viscous balance; S4NR = S4M2 = 1, and 6R < 1 .  Thus 

( b )  Inertial-viscous balance; 6 = R-l and S3N Q 1, which holds if 
R2 is the requirement for the existence of such a layer. 

1 Q R3 Q M 4 R2. 

( c )  Inertial-viscous-electromagnetic balance; 63N = K 2  = O( l), 6 = R-l, which 

M = KR2. 

( d )  Inertial-electromagnetic balance; 6 = (h, /N))  Q 1, R6 B 1, which holds if 

Rk< M Q  R2. 

We now concentrate on the type of layer which occurs when M ,  R and N have 
typical experimental values, e.g. M = 500, R = 5000, N = 50. Thus we can 
ignore situations (a)  and ( c ) ,  but we have to consider both the situations (b )  and 
( d )  since they may both occur in the same range of M and R. However, there is 
no solution to (4 .7 )  which satisfies the required boundary conditions as X - t  k m, 
if the electromagnetic term is neglected and a balance of the inertial and viscous 
forces is supposed to exist. Therefore we must consider the very much thicker 
layer which occurs in situation (d)  where 6 = O(N-5). We call this layer the 
Ludford layer in recognition of the similarities between this work and that of his 
1961 paper. Its structure is governed by the equation 

holds if 

(33vlaX3) + hg(azv/ay2) = 0. (4 .8)  
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We find that it is possible to construct a solution to this equation satisfying the 
boundary conditions and therefore we conclude that the errors, due to neglecting 
the higher order terms in (4.6) of O(N-*), and due to neglecting the viscous terms 
of O(M/R2)%, do not affect the solution to this order of approximation. 

It is important to note that, with this length scale, the boundary curvature 
still tends to infinity with N ;  in fact it is O(N*) in ( X ,  y)-space. Thus, the wall 
still has an abrupt change of slope a t  X = 0. 

Since the problem is linear, we may break it into two parts. The core flow, from 
(3.5), may be written as vo = v1+v2, where v1 = F;(y-Pb)/h2, v2 = Fi(I$--y)/h2, 
and separate solutions for the Ludford layer may be found which match with v1 
and v2 as X --t f 00. Thus, without loss of generality, we may assume that it is the 
bottom wall which curves abruptly, and consider only the problem of matching 
with v2. Let k- = lim (FL(x)/h), k, = lim (FA(x)/h) and put 

x+o - x+o + 

q ( 0 )  - y = h(O)( 1 - Y) = ho( 1 - Y) .  

The lower wall is then given by Y = 0 in the layer. The boundary conditions on 
w(X, Y )  in the layer are then 

v ( X ,  1) = 0, (4.9) 

1 v ( X ,  0 )  = k- x < 0, 

= k, x > 0, 
(4.10) 

v-+k-( l -Y) as X - f - 0 0 ,  (4.11) 

v + k + ( l - Y )  as X++co,  (4.12) 

in order to match with v2. 

Structure of the layer 

The problem for v may be further divided by writing 

w = k ( 1 -  Y)+(k,-k-)v", 

I where v*(X,  1) = 0, 

v*(X ,  0) = 1 ( X  > O ) ,  

= 0 ( X  < O ) ,  

v * + l - Y  as X++co,  
v*+O as X+-co ,  

(4.13) 

(4.14) 

and (a3v*/ax3) + (Pv*/8Y2) = 0. (4.15) 

The solution to (4.15) which satisfies the boundary conditions (4.14) is easily 
found by transform techniques, and may be written as 

(4.16) 
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In (4.16), the contour passes below the origin in the w-plane. For X > 0 the 
integral may be evaluated by completing the contour in the upper half-plane, 
and the result is 

(4.17) When X < 0, 

(4.18) 

on completing the contour in the lower half-plane. Notice that 

V*(O, Y )  = Q(1- Y ) .  

Graphs of v* and 1 - Y - v* against X are plotted in figure 3; the discussion of the 
graphs is left to the conclusion. 

09 r 

- 2 - 1  0 1 2  3 4 5 

( b )  

X 

FIGURE 3. Profiles of v* and 1 - Y-v* through the Ludford layers. These profiles indicate 
respectively the distribution of v when a straight duct joins a diverging duct and a con- 
verging duct joins a straight duct, aa well as enabling the distribution of v in the general 
case to be calculated. 

5. Hartmann boundary layers 
We turn now to the boundary layers, B, and show how to calculate the flow 

there to the same order of accuracy as in the core. Consider the non-dimensional 
equation (3.1) written in terms of the s, n, z co-ordinates shown in figure 4, and let 
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U be parallel to the wall and ;zi normal to it. The magnetic field is at an angle a to 
the normal of the wall. We have: 

1 
as an as R (5.1) 

-aii aii ap 
u - + ;zi - = -- - N cosa(E,+ii cos a- V sin a )  + - V%, 

- a ~  a;ii ap 1 
u- + V- = -- + N sina(E, + ii cosa - V sin a) + - V%, 

8s an an R ( 5 4  

FIGURE 4. The notation for the boundary layer analysis in § 5 .  

These equations may be simplified by ignoring terms of order, S,, where S,( < 1) 
is the non-dimensional boundary-layer thickness. Then if we write y = n/Sl, and 
7 = V/Sl, the above equations become: 

-aii -as 1 a 2 i i  
u-+v-=--- N cos a(E, + ii cos a)  + O(6, N )  + - - , as a< as 8; R a p  (5.4) 

As with the Ludford layer, the structure of this boundary layer also depends on 
the relative sizes of M and R. In  this case if N (  = M 2 / R )  3- 1 there is only one 
possible type of boundary layer, i.e. one in which the electromagnetic and viscous 
terms are very much greater than the inertial terms and balance each other. 
Hence it follows from (5.4) that 

N = 0(62,R)-l. 

or Sl = O(NR)-B = O(H-l). (5.7) 

For the boundary-layer thickness to be small compared with the duct width, 6 
must be small, or M 9 1. 

With these two approximations and using (5.7) we can obtain the zeroth-order 
solution for B, Go, which satisfies 

o = - N-yaplas) - COS E(E ,  + uo cos a )  + ( a  
o =  - N - (  aP/aC), (5 .8 )  
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and the no-slip condition a t  the wall. The solution is 

iio = Uom( 1 - e-ccosa), (5.9) 

where iiom is the component of the zeroth-order core velocity parallel to the wall 
(Stewartson 1960). 

The higher order approximations to 5, V and p depend on the relative magni- 
tude of M and N ( =M2/R),  since 5, V and p may be expressed as asymptotic 
expansions in M-1, N-l ,  or in a combination of powers of M-1 and N-1. Let us 
consider the two limiting cases when N - l $  M-l and M - 1 3  N-1. Then the 
expansions may be written: 

ii = Go + (N-l iiln + N-2Uz, + . . . ) + [M-1 El, + M-2U2m + . . .I, 
v = E0+(N-1Vln+N-2Vzn+ ...)+[M-1Vl,+M-2E2m+ ...I, 
p = N{po + (N-lpl, + N-2pzn + . . .) + [M-lpl, + M-'pZrn + ...I}, 

- 

where the expansion in either the square or round brackets vanish in the two 
cases. Then, in the f i s t  case, i.e. N-l& M-l, the expansion can only proceed 
until N+ N M-1 for some r ,  at which point it must either be terminated or a new 
mixed expansion of the form N+ M-8 must be considered. We may note that in 
this case M and R have the same relative magnitudes as in our analysis of the 

R* 4 M 4 R Ludford layer, i.e. 

which is a condition satisfied in many experiments. Also in the first case it is 
important to realize that the higher order approximations may be matched to 
those in the core. 

In  the second case, i.e. M-l$  N-l ,  or M 9 R, the expansion is carried out in 
terms of M-l, or equivalently 8, which means that the core velocity is not re- 
garded as para,llel to the wall. Therefore the core velocity also has to be expressed 
as a series in 8, and has to be matched to the boundary-layer solution in such a 
way that the core velocity ceases to be independent of the boundary-layer flow. 
We ignore this expansion since it is of no practical use and concentrate on the 
first case. 

We first find Gin, using the zeroth order solution (5.9). Now Zln satisfies 

. -  
Outside the layer iiln = ?ilm and 

apl,las = - iila c ~ s 2 a  - uom(auo,/as). 
Hence we can rewrite (5.11) as 



254 J .  C .  R. Hunt and 8. Leibovich 

To find Ulm and Uom we use the results of 3 3, noting that 
- 
uow = uo cos a + vo sin a, 

ulm = u1 cos a + v1 sin a, 
- 

and 

where tan a = FL and uo, vo, ul, vl, are as defined in 3 3. 

only linear equations need be solved. The algebra is complicated, however. 
In  principle, higher order terms in the expression for U may be found, since 

6. Example : flow through straight-walled converging and diverging ducts 
We now consider the flow through a simple duct as an example. The expres- 

sions, 
y =  +1  for x <  0 and y =  + ( l + x t a n a )  for x >  0, 

represent a diverging duct if a > 0. In  these relations and those below which 
follow from it, if x is replaced throughout by - x, the solution for a converging 
duct is obtained. 

Then the zeroth-order solution outside the Ludford layers is: 

x < 0,core uo = 1, vo = 0, 

apolax = - iv(i + E,) ; 
- 

boundary layer uo = 1 - e-5; 
1 y tan a x > 0, core u - v -  

O - 2(1+xtana)’ O -  2(1+xtana)2’ 

apolax = - N  [ 2( 1 + x 1 tan a) + E O ] ;  
- 

boundary layer 

where c =  M(l-Y), for y > 0, x < 0;  

= M(l+Y), for y < 0, x < 0 ;  

= ( l+xtana-y)Mcosa ,  for y > 0, x > 0; 

= ( l+xtana-y)Mcosa ,  for y < 0, x > 0. 

uo = (1 - e-5)/(2 cos a (1 + x  tan a) ) ,  

When x < 0 the first-order solution is 

u1 = v1 = apllax = 0. 

(All higher orders are also zero.) When x > 0 the first-order solution is : 

core 
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(Q14a) (1 + 0083N-')/ 

boundary layer 

/ *.Ll.-. X 

u -  - 3cosa(l+xtana)3 tan3 a { 1 - (1 + (z) 16sin2a 6+ (e) 16sin a iz) e-c} . (6.6) 

(Q14a) (1 + 0083N-')/ 

In  figure 5 we show velocity profiles in the core for flow in diverging and converg- 
ing ducts, i.e. positive and negative a, and in figure 6 we show velocity profiles 
for the components of velocity parallel to the wall, a, in the boundary layers. 

/ *.Ll.-. X 

(I + 0.168N-I) (Q/4u) 

1 1 1  
' a  .-. 

I I I I I I l l l l l l  I I (1 - 0083N-') ( Q / ~ u )  

FIQTJRE 5. Velocity distribution in the core for (a) diverging and (6) converging flows. The 
values of velocity are taken at z = & 1 and a = 4 5 O ,  respectively. 
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7. Discussion 
(a )  Core and boundary layers 

The example presented in $ 6  reveals some of the effects of considering higher 
order terms in the core and boundary-layer flows. Although the zeroth-order 
approximations for the core flow are identical in converging and diverging ducts 
(except for direction, of course), the first-order approximations differ in a 
surprising way. For a given value of x, the core velocity in a straight-walled 
diverging duct, such as that considered in $6,  is greatest near the walls and 
least in the centre, whereas for flow in a converging duct the reverse is true. There 

02 

5 0 1  

0 

-005 

b 

FIGURE 6. The velocity profiles of 5, and gl in the boundary layer where z = f 1 and 
a = & 45". (Note ;ii = Go +N-lG,  and 5 = M-ln, where n is the co-ordinate normal to the 
wall.) 

seems to be no obvious physical explanation for this effect, which only occurs in 
certain types of duct since, if the duct width is proportional to 1/(1 -x) for 
1 > x > 0, the velocity is greatest in the centre for a diverging duct and least in a 
converging duct. Thus we conclude that the first, and presumably, higher approxi- 
mations to the velocity profile are very sensitive to the rate of change of the duct 
width with distance along it. 

It is of interest to compare the values of uo and u1 in our example of $ 6  in order 
to calculate the value of N which enables the required condition, N-lu,  < uo, to 
be satisfied. For example, when 01. = 45", x = 1 and y = 0, ulluo = +i, so that 
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even if N is as low as 5 the conditions for the analysis of the core would be well 
satisfied. On the other hand, for the analysis of the Ludford layers we must satisfy 
the condition that N* 9 1 so that in an experiment where N N 10, say, the experi- 
mental core flow would be adequately described by our theory but not the experi- 
mental Ludford layers. 

Figure 6 indicates how inertial effects become apparent in the Hartmann 
boundary layers when the first-order approximation is considered. When the 
core flow is decelerating tts in a diverging duct, there is a slight tendency for 
back flow to develop near the wall, whereas, when the core flow is accelerating, 
the flow near the wall is faster. It is interesting that the tendency for back flow 
to develop in a diverging duct is very much greater when Ulm < 0, as in a duct 
whose width is proportional to I/( 1 - x), than when Tilw > 0, as in the example 
of $6, which indicates that the first-order approximation of the core flow has an 
important effect on the boundary-layer flow. 

(b) Ludford layers and the relation between Ludford’s solution and 
the duct flow problems 

We have considered the structure of the Ludford layer when the core flow is 
continuous in u,, and when the predominant forces are pressure, inertial, and 
electromagnetic. The criteria to be satisfied by M and R for our analysis are 

R2 9 M 9 Rt. (7.1) 

In  this case the thickness of the layer, 6, is O ( N 4 ) .  The key to a physical under- 
standing of the layer lies in the role of the pressure gradients; the pressure 
gradient in the y-direction, ap/ay, is U(N-l)  in the core,while in the Ludford layer 
it is O ( N i ) ,  because it is the pressure gradient which accelerates the fluid in the 
y-direction, not, of course, the electromagnetic force. Since the pressure varies in 
the y-direction, there must be a component of ap/ax of O(N3) which also varies in 
the y-direction, i.e. different from the core value of aplax = O ( N ) ,  and this 
secondary component of ap/ax is balanced by the j x B force produced by a per- 
turbation velocity U of O ( N 4 ) .  The practical significance of the pressure gradient 
is that, since pressures are measured more easily than velocities, probably the 
best way to confirm the existence of Ludford layers is to check whether the 
pressure difference across an asymmetric channel at a point where the wall slope 
changes suddenly is O(N*).  

Note that the graphs ofv* and (1 - Y - v*) shown in figure 3 can be interpreted 
directly since v* ( = v/k+) is proportional to v when k- = 0, that is, a straight duct 
joining a diverging duct. Also, (1 - Y - v*) ( = v /k- )  is proportional to v when 
k, = 0, that is, for a converging duct joining a straight duct. From v* and 
(1  - Y - v*) we can calculate v for the general case in which k, and k- are both 
non-zero. Also note that the damped wave, for which there is no obvious explana- 
tion, always occurs downstream of any change in the slope of the duct wall. 

Our original solution for v in the Ludford layer, not reported here, suggested 
to us that a uniform approximation for the unconfined flow over a body, valid 

17 Fluid Mech. 28 
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for both Ludford's inner and outer regions, is given by 

J .  C. R. Hunt and 8. Leibovich 

where y = P(x) ,  ( - 1 < x < l), is the profile of the body. This is a slight modifi- 
cation of Ludford's solution, y in his being replaced here by ( y  - B'(x)). The modi- 
fication is proposed only for sharp nosed, symmetric bodies, and was in fact 
hinted at  in Ludford's (1961) paper. In  the appendix, it is shown that (7.2) reduces 
to Ludford's outer solution when y = O(Nt ) ,  and his inner solution when y = O( 1)' 
with corrections which amount to placing Ludford layers at  the nose and tail. 

On the surface, it  appears as though there is a discrepancy between our results 
and Ludford's for bodies in ducts as the duct width, a, tends to infinity. For 
example, his analysis predicts that a non-symmetric body disturbs the flow 
upstream, whereas ours indicates that for such a body in a straight-walled duct 
there is no upstream effect even as a + 00, as shown in (3.6). However, our analysis 
is in fact not appropriate for studying the effect of flow past bodies whose 
characteristic dimension is very small compared to a, and Ludford's solution 
must be appealed to in this situation. 

( c )  Limitations of the analysis 

Our analysis has been for two-dimensional flows, but since experiments have to 
be performed in finite-sized ducts the effects of the side walls parallel to the fields 
must be considered. Also, it is only by considering the side walls that we can 
determine E,. These walls may be non-conducting, or, if conducting, they may be 
split up into segments. They may also diverge in the x-direction. In  these cases 
E, may vary in the x-direction and Ex is likely to be non-zero, in which case 
secondary flows may result, and our analysis will not hold except perhaps in the 
centre of the duct away from the side walls. Therefore, our analysis is expected 
to be most applicable in a duct with continuous conducting walls parallel to B, 
since then E, will be uniform in the core and Ex = 0. E, will then be determined 
by considering the external electrical circuit and the total current leaving the 
duct. Even in this case the analysis will fail where the conducting-electrode walls 
end a t  the edge of the power extraction or injection region. However, we hope to 
extend this work to cover these more complicated situations. 

J. C. R. N. publishes this work by permission of the Central Electricity Gener- 
ating Board. S. L. held a N.A.T.O. Postdoctoral Fellowship at  University College, 
London, while this work was being pursued. We would like to thank Miss Sheila 
Burroughs for the competent computing work which is incorporated in the paper 

t Ludford's function X ( 3 )  is defined by 

Notice that it is st function of the similarity variable q = .;/y%. See his 1961 paper for 
details. 
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and also Professors J. A. Shercliff and K. Stewartson for giving us their com- 
ments on a draft of this paper. Finally, we gratefully acknowledge the many 
helpful suggestions of the referees. 

Appendix 

problem (in the sense indicated). 
In  the appendix, we show that (7.2) is a uniform approximation to Ludford’s 

For y = O(N8),  put y = ZN8 into (7.2). Then 

for 2 bounded away from zero, by Taylor’s theorem. Thus (7.2) agrees with Lud- 
ford’s result to O(N-4) in the outer region. 

To consider the situation in the inner flow, when y = O(l),  first integrate (7.2) 
by parts to get 

v = F’(-l)%[*N*] -F’(l)%[--]+/:lF”(t)%dt. N ) ( x -  1) 

(Y - (Y - lv 
Now, for - 1 < x < 1, 

[’ P % d t  = [‘-“’’%dt+ [’ P”%dt+O(e), 
J -1 J -1 J X + E  

where s is a small number, but N*s $ 1. Using Ludford’s asymptotic formula 
for large 7, i.e. 

W 7 )  = O(l7l-3) (7 < 01, 

~ ( 7 )  = 1 + ow3 ~ X P  ( - &73)1 (7 > o), 
we have 

s P ” S  dt = Is-‘ F” ( t )  [ 1 + 0{[ (y - P)2/Ne3] exp { - 4Ns3/27 ( y - F)2}] dt 
-1 -1 

+ O{(y--F)(Ne3)-4}+ O(e). 
Thus, 

+ o{(y - P ) ( N ~ ~ ) - - s )  + o(e), (A 1) 

so that if the point x considered is not within a distance O(N-1) from either the 
leading or trailing edge, 

D = F’(x) + O { ( ~ - P ) ( N ~ ~ ) - ~ } + O ( E ) .  

Providing s is chosen so that s3N + co as N -+ co, this reduces to Ludford’s limit 
solution v = F’(x) in - 1 < x < 1. 

On the other hand, if the point in question approaches either - 1 or + 1 to 
O(N-*),  then one of the extra terms in (A 1) remains. For example, near x = - 1, 
the solution is 

?I N P’( - l )z(Nqz + l)/[y - P(x)]P). 
17-2 
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Thus the fluid is taken smoothly through the Ludford layers a t  the leading and 
trailing edges, and the discontinuity in Ludford’s inner solution is removed. 

So far the presence of F(x )  in the argument of %(. . .) has not been utilized. It 
is inserted there in order to satisfy the boundary condition on v at y = F(x) .  In  
this regard, note that all of the error terms in the above vanish as y+P(x)  and 
the results are then exact, i.e. v = P’(x), as required. 
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